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Abstract. We have performedab initio self-consistent calculations of the standard cohesive
properties (equilibrium lattice parameters, binding energies and bulk moduli) of the four alkali-
earth oxides (MgO, CaO, SrO and BaO) having the B1 (NaCl-like) phase under normal
temperature and pressure conditions. We have also studied the relative stability of the B1 and
B2 (CsCl-like) phases, and the behaviour, under pressure of these crystals (equations of state,
transition pressures and changes of volume for the structural phase transition B1→ B2). All
the calculations were performed in the framework of the density-functional theory by a method
which allows the direct calculation of the ground-state electron density of a system without the
preliminary determination of its wavefunctions and energy eigenvalues.

1. Introduction

The alkali-earth oxides are compounds which have technological applications ranging from
catalysis to microelectronics. They are important constituents of the Earth’s lower mantle
and their properties under very high pressures have been studied intensively. Furthermore,
they have served in the past as prototypical oxides for testing semi-empirical theories orab
initio calculations. Thus, a variety of theoretical and experimental studies of their properties
is actually available in the literature.

Band-structure calculations for all the compounds considered in the present paper (MgO,
CaO, SrO and BaO) have been performed by the linearized-augmented-plane-waves (LAPW)
[1–3] and by the linear-muffin-tin-orbitals (LMTO) [4, 5] methods. Results for MgO and
(in some cases) for CaO have also been obtained by using first-principles pseudo-potentials
[6], the Korringa–Kohn–Rostoker (KKR) method [7] and the APW [8] method. With the
exception of [3], in which the optical properties were considered, all these papers reported
results for the cohesive properties and (in some cases) for the behaviour under pressure of
these crystals. All these calculations were performed within the framework of the density-
functional theory (DFT), using the local-density approximation (LDA) for the exchange and
the correlation energies.

Hartree–Fock (HF) calculations, whether including corrections for the correlation
contributions to the total energy or not, have been published for MgO, CaO and SrO [9–11]:
in particular, Pandeyet al [9] focused on the features of the band structure of these solids,
whereas Dovesiet al [10] and Zupanet al [11] reported values for the cohesive properties
and a study of SrO under pressure.
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From the experimental point of view, the behaviour under pressure of these solids has
been investigated by several authors. In particular, a transition from the B1 (NaCl-like) to
the B2 (CsCl-like) phase was detected for CaO by Jeanlozet al [12] and by Mammoneet
al [13]; Sato and Jeanloz [14] observed a similar transition for SrO, whereas BaO has been
found to have a first transition from the B1 phase to a tetragonal [15] or a hexagonal [16]
phase at approximately 9 GPa and a second transition to a tetragonal PH4I phase at 15 GPa
[15, 16]. MgO is stable in the B1 phase at least until 200 GPa [17]; whether it undergoes
a phase transition at a higher pressure (as predicted by the theory) is, to the best of our
knowledge, still an open question.

The results reported in the present paper were obtained by using a DFT method [18]
which allows the direct calculation of the electron density and of the total energy of a
system; the preliminary determination of the energy eigenvalues is unnecessary. The method
is based on the Hohenberg–Kohn variational principle [19], that requires a computational
effort which increases approximately in a linear way with the size of the system and can
be applied to periodic as well as to non-periodic systems.

In this paper, we consider the four alkali-earth oxides having the B1 structure under
normal temperature and pressure conditions. Our objective is twofold: on the one hand, to
perform a systematic study of the cohesive properties and of the behaviour under pressure
of these crystals and on the other hand, to compare our results carefully with those ofab
initio calculations and with the experimental data. This comparison will support the use of
the method in the cases for which a similarly detailed analysis is impossible [20].

2. The method

The Hohenberg–Kohn theorems [19] state that the ground-state electron density of a system
can be found by seeking the minimum of the total energy functional:

Ev[ρ] = T [ρ] + J [ρ] + Exc[ρ] +
∫

Vext (r)ρ(r) d3r . (1)

In this equationT [ρ] is the kinetic energy of a fictitious system of non-interacting electrons
having the same density as the real system,J [ρ] is the electrostatic energy,Exc[ρ] is the
exchange-correlation energy and the last term gives the interaction energy associated with
the external potential.

In an equivalent way, the ground-state electron density can be found by solving the
Kohn–Sham equation [21](

−1

2
∇2 + Vext (r) + δJ

δρ
+ δExc

δρ

)
ψi (r) = εiψi (r) (2)

and then calculating the electron density by

ρ(r) =
∑

i

2ni |ψi (r)|2 . (3)

The coefficientsni take the values unity or zero for levels under or above the Fermi energy,
respectively. They can take fractional values for levels coinciding with the Fermi one. The
factor of 2 is due to the fact that we are implicitly considering the non-spin-polarized case.

In the Kohn–Sham method the electron density is obtained by means of intermediate
quantities (the one-electron wavefunctions) which have no physical meaning in the context of
the DFT. In the case of a crystal, a complete band-structure calculation has to be performed
and the corresponding algorithms require a computational time which grows approximately
asN3, the cube of the number of valence electrons of the system.
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In recent years, some methods have been proposed which allow the determination of
the ground-state charge density directly from equation (1) or with a computational effort
growing less rapidly thanN3 [18, 22–25]. In this paper we will use the method proposed
by Cortona [18], which we describe briefly below.

Let us consider a non-magnetic crystal (or molecule) and partition it into sub-systems.
This means that we have chosen some points within the primitive cell, and we have
associated with each point some nuclear charges (zero, one or several) and one (unknown)
electron density. The total electron density of the crystal is given by the superposition of
the electron densities of the sub-systems:

ρ(r) =
∑
j,k

ρj (r − Rk − τj ) =
∑
j,k

ρjk (4)

whereRk are the vectors of the Bravais lattice andτj are the position vectors of the partition
points within the primitive cell corresponding toRk = 0. The partial electron densities
ρjk(r) can be written (in a non-unique way) in terms of one-electron wavefunctions:

ρj (r − Rk − τj ) =
∑

i

2nij |ψij (r − Rk − τj )|2 (5)

and are supposed to be localized, in the sense that theψij are required to decrease
exponentially when|r −Rk −τj | tends to infinity. Note that theψij are not wavefunctions
of the overall system; they are supposed to be normalized and, if they are centred on the
same pointRk − τj , orthogonal. The coefficientsnij are fermionic occupation numbers
(0 6 nij 6 1) and satisfy the condition∑

ij

2nij = N

Nc

(6)

whereN is the total number of electrons andNc is the number of primitive cells of the
crystal. In contrast, no restriction is imposed in the sum oni: the result can be fractional.

For each choice of occupation numbers and wavefunctions producing a givenρjk(r),
we define a kinetic energy in the usual way:

T [nij , ψij ] =
∑

i

2nij

〈
ψij

∣∣− 1
2∇2

∣∣ ψij

〉
. (7)

We split the total kinetic energy of the systemT [ρ] into the sum of the ‘internal’ kinetic
energies of the sub-systems and a contribution coming from the interaction of the sub-
systems:

T [ρ] =
∑
j,k

T [nij , ψij ] +
(

T [ρ] −
∑
j,k

T [nij , ψij ]

)
. (8)

The internal terms are treated exactly, whereas an approximation is used for the inter-sub-
systems kinetic energy.

Suppose thatT a[ρ] and Ea
xc[ρ] are approximate expressions for the kinetic energy and

the exchange-correlation energy functionals. We replace the exact total energy functional
with the following:

Ea[nij , ψij ] =
∑
j,k

T [nij , ψij ] +
(

T a[ρ] −
∑
j,k

T a[ρjk]

)
+ J [ρ] + Ea

xc[ρ]

+
∫

Vext (r)ρ(r) d3r (9)

and we seek the minimum value of this functional by varying the wavefunctionsψij and
the occupation numbersnij .
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By performing the variation, we find that the wavefunctionsψij must satisfy the Kohn–
Sham-like equation(− 1

2∇2 + Veff

)
ψij (r − Rk − τj ) = εij ψij (r − Rk − τj ) (10)

with

Veff = Vext + δJ

δρ
+ δEa

xc

δρ
+ δT a

δρ
− δT a

δρjk

(11)

and that the occupation numbers, the total energy of the crystal and the energy eigenvalues
are related by

εij = 1

2Nc

∂Ea

∂nij

. (12)

Equation (10) is a set of equations (one for each orbital of each sub-system) which
must be solved simultaneously and self-consistently. The partial charge densities are then
determined by equation (5), with the occupation numbers chosen according to the Fermi
statistics. All the interactions of the sub-systems are contained in the effective potential
(equation (11)). This potential can be divided into a contribution internal to a given sub-
system and a ‘crystalline’ potential. The latter can be split into a short-range contribution,
which needs to be taken into account only up to a finite order of neighbours, and a long-range
contribution, that can be summed up to all orders of neighbours by the Ewald technique.
Further details on these latter points can be found in [26].

3. Technical remarks

In all the calculations we have used the local approximation for the inter-sub-systems kinetic
energy, for the exchange and for the correlation energy. The latter was taken into account
by using the Ceperley–Alder–Perdew–Zunger expression [27]. We chose partition pointsτj
coinciding with the atomic positions and derived the effective potentials from spherically
averaged electron densities around each site.

In order to determine the total energy curve, we performed a large set of self-consistent
calculations for each compound. The lattice parameters (between 20 and 30, depending on
the system) were taken equally spaced (0.05 and 0.03 Å for the B1 and the B2 structures,
respectively) and approximately symmetrically disposed around the experimental one. Very
severe self-consistency tests were imposed in order to guarantee a high level of numerical
accuracy [28]. All the calculations were fully relativistic, in the sense that the Schrödinger-
like equation (10) was replaced by the corresponding Dirac-like equation. The latter was
solved numerically, by means of standard techniques [29, 30]. The radial integration mesh
was chosen thick enough to reproduce correctly the rapid variations in the effective potential
at the distances corresponding to the various orders of neighbours.

We fitted the total energy values by polynomials from second to sixth degree of the
lattice parametera as well as ofV −2/3 (Birch’s equation;V is the volume of the primitive
cell). The number of calculated points used in the best fits was reduced progressively in
a symmetrical way around the predicted equilibrium lattice parameter. The values of the
cohesive energies, the lattice parameters and the bulk moduli obtained from the total energies
curves fitted by polynomialsP(a) of fourth, fifth and sixth degree were practically the same
and were insensitive to the reduction in the number of points used in the best fit. The spread
of the bulk modulus values for each crystal and for each phase was contained within (and
very often was smaller than) 0.5 GPa around some mean value. The results reported in
tables 3 and 8 (later) were obtained by rounding these mean values. No fluctuations at all
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were noticed for the values of the equilibrium lattice parameters and of the cohesive energies.
The results obtained by fitting the calculated values by means of the Birch equations of state
P(V −2/3) of various order were identical to the preceding ones within the precision shown
in the tables.

As mentioned above, all our calculations were performed using effective potentials
that are spherically symmetrical around the partition pointsτj . Thus, the partial electron
densitiesρjk are spherically symmetrical. However, the total electron densityρ resulting
from the superposition of theρjk (equation (4)) is non-spherical and the contributions due
to its non-sphericity can be taken into account, or not, when the total energy is calculated.
Both types of results will be reported in the following. In practice, in a ‘non-spherical’
calculation, the various contributions to the total energy per primitive cell were obtained by
performing tridimensional integrals of the type∫

cell

ρε[ρ] d3r (13)

whereε[ρ] is the pertinent energy density. In a ‘spherical’ calculation, these integrals were
rewritten as follows:∫

cell

ρε[ρ] d3r =
∑
j,k

∫
cell

ρjkε[ρ] d3r =
∑

j

∫
all space

ρj0ε[ρ] d3r (14)

and then the total electron densityρ was replaced by its spherical average around the point
τj [31]. This second procedure is consistent with the use of effective potentials derived
from spherically averaged electron densities and the results obtained in such a way are
completely self-consistent. In the first procedure, the non-spherical contributions are taken
into account at the level of accuracy of first-order perturbation theory.

4. Results and comments

In tables 1–4 are reported our results for the cohesive properties of the alkali-earth oxides
as well as the corresponding experimental data and the results of LAPW [1, 2], LMTO
[4, 5], KKR [7] and HF [10, 11] calculations. All the experimental data refer to room-
temperature conditions, whereas the theoretical values are pertinent to the static crystal.
Thermal corrections should be introduced in order to perform a consistent comparison. In
the cases of MgO and CaO these corrections have been evaluated by Mehlet al [1]: they
are practically negligible for the lattice parameters and the binding energies, while the bulk
moduli should be increased by 7–8 GPa.

Table 1. Calculated and experimental lattice parameters inångstr̈om units.

Experimentala Non-sphericalb Sphericalb LAPWc LMTOd KKRe HFf

MgO 4.21 4.20 4.27 4.17 4.09 4.22 4.20
CaO 4.81 4.76 4.84 4.72 4.65 4.82 4.87
SrO 5.16 5.10 5.18 5.07 5.22 5.23
BaO 5.54 5.43 5.52 5.44 5.51

a Experimental results [32].
b ‘Non-spherical’ and ‘spherical’ calculations (present work, see text).
c Full-potential linearized augmented plane waves [1, 2].
d Linear muffin-tin orbitals [4, 5].
e Korringa–Kohn–Rostoker [7].
f LCAO Hartree–Fock [10, 11].
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Table 2. Calculated and experimental binding energies (referred to free atoms) in electron-volts.

Experimentala Non-sphericalb Sphericalb LMTOb KKRb HFb

MgO 10.3 10.5 9.7 10.7 11.6 7.3
CaO 11.0 11.8 11.2 9.1 12.5 7.6
SrO 10.4 10.9 10.5 9.8 6.6
BaO 11.0 10.6 12.4

a [33].
b As in table 1.

Table 3. Calculated and experimental bulk moduli in gigapascals. The values marked by an
asterisk were determined at the experimental lattice parameters, whereas all the other theoretical
values correspond to the calculated equilibrium lattice parameters.

Experimentala Non-sphericalb Sphericalb LAPWb LMTOb KKRb HFb

MgO 160 163 150 170 171∗ 171 186
CaO 111 111 103 129 96 119 128
SrO 89 88 82 106 107∗ 108
BaO 74 73 68 86 70

a [34, 35].
a As in table 1.

Table 4. Relative stability of the B1 and B2 phases at zero pressure,E(B2)−E(B1) in rydbergs.

Non-sphericala Sphericala LAPWa

MgO 0.124 0.108 0.111
CaO 0.089 0.077 0.065
SrO 0.069 0.061 0.051
BaO 0.065 0.059 0.033

a As in table 1.

When considering the various theoretical results reported in the tables, it should be taken
into account that the LAPW calculations include the non-spherical contributions to the total
energy, thus they shall be compared with our non-spherical results. On the other hand, our
spherical results shall be compared with those obtained by LMTO or KKR calculations.
Looking at the results of these two latter methods, it is easy to note that the discrepancies
are quite large. Because in both calculations the LDA was used and spherical averaging of
the potential was performed, these discrepancies can only be attributed to the different way
of solving the band-structure problem.

In table 1, it can be seen that our calculated lattice parameters agree with the
experimental results to within 2% and with the LAPW ones to within 1%. The agreement
is also excellent between our spherical calculations and the KKR ones, whereas greater
discrepancies are found with respect to LMTO calculations.

Our calculated binding energies (table 2) compare well with the experimental data. In
particular, we correctly find the greatest binding energy for CaO and similar values for MgO
and SrO. This trend is not correctly reproduced by the LMTO method.

The calculated bulk moduli are compared with the experimental data in table 3. Precise
measurements of the bulk moduli are quite difficult: the values reported in table 3 are due
to Chang and Barsch [34] and Chang and Graham [35], who measured the elastic constants
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of these crystals by ultrasonic techniques. These values agree within a few gigapascals
with the results of similar measurements performed by Marklund and Mahmoud [36] and
by Son and Bartels [37]. Our non-spherical bulk moduli are in excellent agreement with
the experimental data at room temperature. However, as we have already pointed out, the
latter should be extrapolated to the static crystal. The resulting values will be between our
results and the LAPW ones.

The relative stability of the B1 and B2 phases is studied in table 4. It can be seen that
all these compounds are stable in the B1 phase atp = 0, in agreement with experiment.

Figure 1. The equation of state for MgO. The full and broken curves correspond to our spherical
and non-spherical calculations, respectively. The experimental data (circles) were taken from
[38, 39].

Table 5. Calculated and experimental pressures in gigapascals for the transition from the B1 to
the B2 phase.

Experimental Non-sphericala Sphericala LAPWa APWb Psuedo-potentialc

MgO > 200d 370 227 518 205 1050
CaO 63e 122 75 56 32
SrO 36f 63 42 29

a As in table 1.
b Augmented plane waves [8].
c First-principles pseudo-potentials [6].
d [17].
e [13].
f [14].

In tables 5 and 6, and in figures 1–3, the behaviour under pressure and the phase
transition from the B1 phase to the B2 one are investigated. Figures 1–3 show that the
behaviour under pressure of these crystals is quite accurately reproduced. In particular, for
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Figure 2. The equation of state for CaO. The full and broken curves correspond to our spherical
and non-spherical calculations, respectively. The experimental data (circles) were taken from
[13].

Table 6. Percentage changes in volume(V (B1)−V (B2))/V (B1)× 100 at the phase transition.

Experimental Non-sphericala Sphericala LAPWa Pseudo-potentialb

MgO 5.8 7.1 4.7 4.8
CaO 9.7c 7.0 9.0 11
SrO 12d 7.8 9.8 12

a As in table 1.
b As in table 5.
c [13].
d [14].

CaO and SrO the spherical results generally agree with the experimental data within the
experimental errors. The non-spherical results tend to underestimate the pressure required
to obtain a given volume: this reflects the fact that the equilibrium lattice parameter at
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Figure 3. The equation of state for SrO. The full and broken curves correspond to our spherical
and non-spherical calculations, respectively. The experimental data (circles) were taken from
[14].

p = 0 is slightly underestimated. It can be seen that the discrepancies between calculated
and experimental volumes at high pressures are similar to the discrepancies atp = 0. This
means that, in the overall range of pressures considered, the discrepancies in the lattice
parameters are of a few per cent. Similar considerations also apply to MgO, with the
additional remarks that in this case the slope of thep(V ) curve is less well reproduced and
that the experimental data agree almost equally well with the non-spherical and the spherical
results. In table 5 are reported the calculated and experimental transition pressures from
the B1 to the B2 phases and in table 6 the corresponding changes in volume. It can be
seen that the non-spherical results overestimate the transition pressures for CaO and SrO by
about a factor of two, whereas the spherical results are in much better agreement with the
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Table 7. Calculated lattice parameters for the B2 phase inångstr̈om units.

Non-sphericala Sphericala LAPWa

MgO 2.59 2.62 2.60
CaO 2.90 2.93 2.85
SrO 3.10 3.13 3.04
BaO 3.31 3.34 3.24

a As in table 1.

Table 8. Calculated bulk moduli for the B2 phase in gigapascals.

Non-sphericala Sphericala LAPWa

MgO 163 155 170
CaO 119 113 129
SrO 99 94 106
BaO 84 79 86

a As in table 1.

experiments, the discrepancies being similar to those of the LAPW results.
Finally, in table 7 and 8 are reported the equilibrium lattice parameters and bulk

moduli for the B2 phase. Certainly, these quantities cannot be measured experimentally.
Nevertheless, knowledge of them is required in order to write some analytical equations of
state. The values that we have obtained are in good agreement with the LAPW ones.

5. Conclusions

The results reported in this paper show that the method we have used gives an accurate
description of the cohesive properties of the alkali-earth oxides. All these crystals are
found to be stable in the experimentally correct crystallographic phase and their equation
of state is quite accurately reproduced. However, the results for the transition pressures
of CaO and SrO are not satisfactory: we obtain good results by the spherical calculations,
but not by the non-spherical ones, which are, in principle, the more accurate ones. It
is worth noticing that, in the case of the alkali-earth sulphides [20], we found transition
pressures in reasonable agreement with experiment. Thus, in order to establish whether
the discrepancies between the calculated values and the experimental data have some well
defined trend, further calculations on other ionic systems are needed.

The comparison with the band-structure calculations indicates that our results are about
as accurate as those obtained by the very sophisticated full-potential LAPW method and
more accurate than the results obtained by a method such as the LMTO one, which uses
the atomic sphere approximation. In any case, at least for the systems considered in this
paper, the additional approximation on the kinetic energy which characterizes the method
has only minor consequences: our results are well within the spread of values produced
by the different techniques and approximations used in the band-structure calculations for
solving the Kohn–Sham equation.

The main advantages of the method are its simplicity, that there is a linear increase in
computing time with the size of the system and the non-crucial role of the crystal periodicity.
It is precisely this last feature of the method which promises to be particularly useful for
studying partially disordered solids. However, in order to take advantage of these features of
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the method completely, a more complete inclusion of the non-spherical effects is required:
the present version of our program cannot correctly treat systems whose electron density
is far from a superposition of spherical densities. More generally, it cannot give a good
account of the properties that are strongly affected by the non-sphericity of the sub-system
electron densities. Thus, it is important to notice that the spherical approximation is not
an intrinsic feature of the method and that it can be removed in future calculations. We
believe that our method can be usefully applied to the study of molecular crystals: the
good agreement with experimental data of the results for the rare-gas crystals [40] is a
strong indication in that direction. For general molecular systems, the natural partition units
are the molecules and equation (10) must be solved by using a molecular-like program,
with the non-spherical contributions included in the effective potential. Finally, we notice
that a way of including the non-spherical contributions in the calculations self-consistently,
consists of solving equation (10) by diagonalizing the Hamiltonian on a localized basis
set. This approach, which has been used successfully by Yang [22, 41] in the context of a
similar theory, can be particularly useful for covalent systems, such as, for example, typical
semiconductors.
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